Abstract

Material selection is one of the main phases of product design process that has great impact on the manufacturing of sustainable products. One of the best approaches of material selection for sustainable products is life cycle engineering (LCE). But LCE is a costly and cumbersome task and it is not economic to perform this task for a large number of proposed materials in order to choose the most suitable one for a sustainable product. Instead, it is more reasonable to make a preliminary filtering on the proposed materials and obtain a shorter list of candidate materials and then perform LCE on alternatives which are obtained from preliminary filtering. Since environmental friendliness of materials is a critical sustainability issue, so it is a good criterion for preliminary filtering of alternatives. In this paper, a new methodology is proposed to support preliminary filtering of alternatives from environmental viewpoint. The methodology uses the knowledge of experts in the field of eco-design. The knowledge is translated to decision making rules and a decision tree is developed to guide the choice. In order to use the capabilities of frame-based systems, an object-oriented approach for representation of knowledge is also proposed. Moreover, a prototype hybrid expert system based on the proposed methodology called material selection expert system for sustainable product design is developed to support the task of preliminary filtering. Finally, a case study from tire manufacturing industries is presented to show the validity of the proposed system. The results show that the system can determine the appropriate candidate materials and hence improve the possibility of manufacturing of more sustainable products. Eliminating alternatives that do not have the necessary conditions for sustainable product leads to a large saving in time and cost of the LCE evaluation process

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.