Abstract

One of the challenges often encountered in compliant mechanism design is managing material selection given the need to meet multiple constraints. Many methods have been offered previously to systematically facilitate that decision process. However, these methods struggle to incorporate a systematic method for material selection in multi-functional compliant mechanisms. This work seeks to address this gap by generically implementing a new Ashby-based material selection and design method for compliant mechanisms with multi constraint design criteria. To help demonstrate the method, the design of an electrically conductive lamina emergent torsion (LET) joint used for a back-packable solar array is explored. The methodology described here can be used to create other compliant mechanism performance metrics to address the design of specific compliant mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call