Abstract

Density is an important material property for evaluating, or developing a tablet formulation. In-die compressibility data can be obtained using a small amount of powder with the help of a compaction simulator. However, compacts undergo volume expansion upon ejection from die. Therefore, accurate out-of-die compressibility profiles cannot be directly obtained from the in-die data. By splitting the tablet elastic recovery into three components (in-die axial, out-of-die axial, radial), we have shown that the in-die elastic recovery is linearly dependent on the compaction pressure within the range investigated, and the out-of-die elastic recovery is a material constant. Hence, we have developed a two-step data treatment (the Hirschberg-Sun approach) for deriving an accurate out-of-die compressibility profile from in-die and out-of-die data of two tablets compressed at a low and a high compaction pressure. The broad applicability of the approach was verified with a larger number of diverse materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call