Abstract

Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation) can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load). Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxoguanine-repair-deficient (GO-deficient) Escherichia coli strain as a hypermutator model, we investigated the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY) strains. NorM is a member of the multidrug and toxin extrusion (MATE) family of efflux pumps whose role in E. coli cell physiology remains unknown. Our results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the ability of NorM to reduce the level of intracellular reactive oxygen species (ROS) in a GO-deficient strain and protect the cell from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules—byproducts of bacterial metabolism—that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.

Highlights

  • Maintaining the integrity of genetic information is crucial for all living organisms

  • Some bacteria and eukaryotic cells produce a higher-thannormal number of mutations

  • We have found that some types of hypermutable mutants can escape this fate by increasing the expression of an efflux pump predicted to export specific oxidative substances, the precursors of many mutations, and reducing their number

Read more

Summary

Introduction

Maintaining the integrity of genetic information is crucial for all living organisms. Mutations originate from replication errors and DNA damage from endogenous and exogenous origin. Through natural selection, has produced a number of systems to prevent or repair these errors. The post-replication mismatch repair system (MMR) repairs mainly replication errors (for a review see [1]). Endogenous damage to DNA bases are repaired primarily by base excision repair (BER) (for a review see [2]). Of particular importance are oxidative DNA lesions which play a major role in spontaneous mutagenesis, because oxidized bases can mispair with noncognate ones [2]. Noteworthy amid these oxidative lesions is oxidation of guanine to 7,8-dihydro-8oxo-29-deoxyguanosine (8-oxo-dG). If 8oxo-dG is not repaired, it can be bypassed by DNA polymerases and pair with either C or A, causing GC to TA transversions [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.