Abstract
SUMMARYSeismic traveltime tomography is a geophysical imaging method to infer the 3-D interior structure of the solid Earth. Most commonly formulated as a linearized inverse problem, it maps differences between observed and expected wave traveltimes to interior regions where waves propagate faster or slower than the expected average. The Earth’s interior is typically parametrized by a single kind of localized basis function. Here we present an alternative approach that uses matching pursuits on large dictionaries of basis functions.Within the past decade the (Learning) Inverse Problem Matching Pursuits [(L)IPMPs] have been developed. They combine global and local trial functions. An approximation is built in a so-called best basis, chosen iteratively from an intentionally overcomplete set or dictionary. In each iteration, the choice for the next best basis element reduces the Tikhonov–Phillips functional. This is in contrast to classical methods that use either global or local basis functions. The LIPMPs have proven their applicability in inverse problems like the downward continuation of the gravitational potential as well as the MEG-/EEG-problem from medical imaging. Here, we remodel the Learning Regularized Functional Matching Pursuit (LRFMP), which is one of the LIPMPs, for traveltime tomography in a ray theoretical setting. In particular, we introduce the operator, some possible trial functions and the regularization. We show a numerical proof of concept for artificial traveltime delays obtained from a contrived model for velocity differences. The corresponding code is available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.