Abstract

Abstract. Searching for suitable material for photogrammetry is a key part in the documentation of Cultural Heritage. Photogrammetry can be used to produce a metrically certified 3D model. Material contained in historical film footage archives is especially useful for documentation when the heritage has been lost. In this research an innovative match-moving method is proposed that aims to exploit Artificial Intelligence and SfM algorithms to identify the frames extracted from a film footage in which the lost monument appears and that are suitable to be processed with photogrammetry for its 3D reconstruction. First of all the identification and tracking of the heritage in the videos was performed training an object detection Neural Network. Then the frames detected were automatically extracted with the coordinates of the bounding boxes that contain the monument. The camera motions were identified by selecting only the shots taken from multiple points of view of the same scene and analysing the evolution of the bounding boxes position over time. A further check of the material was necessary to select only sequences and to eliminate single frames and images from different historic periods. After this process, only the correct frames were automatically selected and processed with photogrammetry and the quality of the obtained 3D model was assessed. The method experimented in this research represents a powerful tool in the field of Cultural Heritage because it makes the selection of suitable material for photogrammetry automatic. Moreover it offers important insights that could be extended to other sectors.

Highlights

  • The rapid development and diffusion of ways to shoot videos used in a wide variety of applications, both professional and amateur, is being increasingly documented

  • 4.2 Results of object detection with Neural Networks The object detection algorithm achieved the recognition of the correct frame containing the searched monument, both in the case of the tower and the pavilions

  • In order to automatically select the frame sets to be used for photogrammetry, the algorithm for camera motion identification described in Section 3.3 was employed

Read more

Summary

Introduction

The rapid development and diffusion of ways to shoot videos used in a wide variety of applications, both professional and amateur, is being increasingly documented. Match-moving is a technique used to track the movements of a camera in a 3D space using the images that it acquires while moving. This method is widely used in computer vision, the film making industry and video editing because it allows the real scene to be matched with virtual creations such as visual effects. It is very rare to find historical footage with long tracks and camera movements filmed from different angles on the same building. Both of these are necessary to create normal or converging views, which are required for photogrammetry

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.