Abstract

The development of temporomandibular joint implants has involved simplified mechanical tests that apply pure vertical forces or pure rotational movements to the implant. The aim of this study was to develop a biological based mastication mechanism and conduct preliminary testing of a novel temporomandibular joint implant. The mechanism was designed to mimic temporomandibular joint loads by performing compression and anterior/posterior translation. Pilot testing was performed on six implant/joint specimens for seven consecutive hours, completing approximately 22,000 cycles at a frequency of approximately 1 Hz. Each cycle had a joint compression phase 67.3 N over 0.15 s followed by a translation phase 8.67 N over 0.43 s that was similar to joint loads/motions that have been reported in vivo. This new mastication mechanism incorporates both anatomical and mechanical variability. The use of biological specimens is an important approach that can help bridge the gap between traditional synthetic implant materials/mechanical testing and in vivo testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.