Abstract

We have theoretically studied important dynamic processes involved in zero electron kinetic energy (ZEKE) spectroscopy using the density matrix method with the inverse Born-Oppenheimer approximation basis sets. In ZEKE spectroscopy, the ZEKE Rydberg states are populated by laser excitation (either a one- or two-photon process), which is followed by autoionizations and l-mixing due to a stray field. The discrimination field is then applied to ionize loosely bound electrons in the ZEKE states. This is followed by using the extraction field to extract electrons from the ZEKE levels which have a strength comparable to that of the extraction field. These extracted electrons are measured for the relative intensities of the ion states under investigation. The spectral positions are determined by the applied laser wavelength and modified by the extraction electric field. In this paper, all of these processes are conducted within the context of the density matrix method. The density matrix method can provide not only the dynamics of system's population and coherence (or phase) but also the rate constants of the processes involved in the ZEKE spectroscopy. Numerical examples are given to demonstrate the theoretical treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.