Abstract

A novel deterministic method to harvest energy within a broadband frequency (0~25 kHz) from a mass-in-mass metamaterial is presented herein. Traditional metamaterials are composed of multiple materials (named as resonators and matrix) with different mechanical properties (e.g., stiffness, density). In this work, the stiffnesses of matrix materials are altered systematically to allow diversified property mismatches between the constituent components to introduce local resonance in the unit cell. While local resonance leverages wave energy passing through the acoustic metamaterials trapped within the relatively soft matrix as dynamic strain energy, a strategic and deterministic methodology is investigated to obtain a broadband local resonance frequency. The frequency band can then be utilized to harvest the trapped energy by embedding a smart material inside the matrix which is capable of electromechanical transduction (e.g., lead zirconate titanate). This concept has been proved numerically by harvesting energy at a broadband frequency with a power density of ~10 μW/in2. Finally, an experimental study is performed to prove the hypothesis proposed in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.