Abstract

In this paper, a mass (or normalization) and magnetization conservative and energy-diminishing numerical method is presented for computing the ground state of spin-1 (or $F=1$ spinor) Bose–Einstein condensates (BECs). We begin with the coupled Gross–Pitaevskii equations, and the ground state is defined as the minimizer of the energy functional under two constraints on the mass and magnetization. By constructing a continuous normalized gradient flow (CNGF) which is mass and magnetization conservative and energy-diminishing, the ground state can be computed as the steady state solution of the CNGF. The CNGF is then discretized by the Crank–Nicolson finite difference method with a proper way to deal with the nonlinear terms, and we prove that the discretization is mass and magnetization conservative and energy-diminishing in the discretized level. Numerical results of the ground state and their energy of spin-1 BECs are reported to demonstrate the efficiency of the numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.