Abstract

We consider the stationary distribution of the M/GI/1 type queue when background states are countable. We are interested in its tail behavior. To this end, we derive a Markov renewal equation for characterizing the stationary distribution using a Markov additive process that describes the number of customers in system when the system is not empty. Variants of this Markov renewal equation are also derived. It is shown that the transition kernels of these renewal equations can be expressed by the ladder height and the associated background state of a dual Markov additive process. Usually, matrix analysis is extensively used for studying the M/G/1 type queue. However, this may not be convenient when the background states are countable. We here rely on stochastic arguments, which not only make computations possible but also reveal new features. Those results are applied to study the tail decay rates of the stationary distributions. This includes refinements of the existence results with extensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.