Abstract

The El Nino-Southern Oscillation (ENSO) is an ocean – atmosphere phenomenon that involves sustained sea surface temperature fluctuations in the Pacific Ocean. This causes disruption in the behavior of the ocean and the atmosphere having important consequences on the global weather. This paper develops a stochastic model to describe El Nino-Southern Oscillation patterns. A Markov Switching Autoregressive model (MS-AR) was implemented to fit the Southern Oscillation Index (SOI), a variable that explains the phenomenon. The model consists of two autoregressive processes describing the time evolution of SOI, each of which associated with a specific phase of ENSO (El Nino and la Nina). The switching between these two models is governed by a discrete time Markov chain. We study the advantages of incorporating time-varying transition probabilities between them and show that the fitted model provides an adequate description of the time series, and demonstrate its utility in analysis and evaluation of the phenomenon

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.