Abstract
This paper presents a class of regression models with cumulative logistic functions that are chiefly designed to analyse spatially dependent ordinal data. In contrast to previous works, the proposed model requires neither the sites to be regularly spaced nor the assumption of an underlying continuous variable. It belongs to a more general class of Markov random field models, and can be considered an extension of the ordinal regression model with the proportional odds link function. Our proposed model allows practitioners to interpret the model parameters using odds ratios. Apart from the theoretical developments, this work also highlights the practical aspects of model fitting, including parameterisation, selection of neighbourhood, and calculation of standard errors. Simulation studies with regularly and irregularly spaced sites were conducted. Modelling strategies including pseudo-likelihood methods were found to be useful in both settings. The proposed model and the non-spatial counterpart were applied to the daily air quality index measured in the United Kingdom. The results indicate the presence of spatial effects and the incorporation of spatial effects led to better model performance in terms of various goodness-of-fit measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.