Abstract

The performance of computed tomography lung classification using image processing and Markov Random Field was investigated in this study. For lung classification, the process must first be going through lung segmentation process. Lung segmentation is important as an initial process before lung cancer segmentation and analysis. Image processing was employed to the input image. We propose multilevel thresholding and Markov Random Field to improve the segmentation process. Three setting for Markov Random Field was used for segmentation process that is Iterated Condition Mode, Metropolis algorithm and Gibbs sampler. Then, the process of classifying lung will proceed. The output from the experiments were analysed and compared to get the best performance. The results revealed that for CT image lung classification, Markov Random Field using Metropolis algorithm gives the best results. In view of the result obtained, the average accuracy is 94.75% while the average sensitivity and specificity are 76.34% and 99.80%. The output from this study can be implemented in lung cancer analysis research and computer aided diagnosis development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.