Abstract

Elementary flux modes (EFMs) are minimal, steady state pathways characterizing a flux network. Fundamentally, all steady state fluxes in a network are decomposable into a linear combination of EFMs. While there is typically no unique set of EFM weights that reconstructs these fluxes, several optimization-based methods have been proposed to constrain the solution space by enforcing some notion of parsimony. However, it has long been recognized that optimization-based approaches may fail to uniquely identify EFM weights and return different feasible solutions across objective functions and solvers. Here we show that, for flux networks only involving single molecule transformations, these problems can be avoided by imposing a Markovian constraint on EFM weights. Our Markovian constraint guarantees a unique solution to the flux decomposition problem, and that solution is arguably more biophysically plausible than other solutions. We describe an algorithm for computing Markovian EFM weights via steady state analysis of a certain discrete-time Markov chain, based on the flux network, which we call the cycle-history Markov chain. We demonstrate our method with a differential analysis of EFM activity in a lipid metabolic network comparing healthy and Alzheimer’s disease patients. Our method is the first to uniquely decompose steady state fluxes into EFM weights for any unimolecular metabolic network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call