Abstract

We consider programmable matter as a collection of simple computational elements (or particles) with limited (constant-size) memory that self-organize to solve system-wide problems of movement, configuration, and coordination. Here, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. More specifically, we seek fully distributed, local, and asynchronous algorithms that lead the system to converge to a configuration with small perimeter. We present a Markov chain based algorithm that solves the compression problem under the geometric amoebot model, for particle systems that begin in a connected configuration with no holes. The algorithm takes as input a bias parameter λ, where λ > 1 corresponds to particles favoring inducing more lattice triangles within the particle system. We show that for all λ > 5, there is a constant α > 1 such that at stationarity with all but exponentially small probability the particles are α-compressed, meaning the perimeter of the system configuration is at most α ⋅ pmin, where pmin is the minimum possible perimeter of the particle system. We additionally prove that the same algorithm can be used for expansion for small values of λ in particular, for all 0 < λ < √2, there is a constant β < 1 such that at stationarity, with all but an exponentially small probability, the perimeter will be at least β ⋅ pmax, where pmax is the maximum possible perimeter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.