Abstract

Recently, a family of uncoupling protein (UCP) genes has been discovered. The role of these genes is unknown, but it has been suggested that they are involved in regulating resting metabolic rate. In this study, we hypothesised that thyroid hormone status may influence the expression of UCP2 mRNA. The adipose tissue levels of UCP2 mRNA were measured in eight female subjects before and after treatment for thyrotoxicosis. All subjects in the hyperthyroid condition had markedly enhanced plasma levels of thyroxine (62.0 +/- 6.9 vs. 17.9 +/- 1.7, p = 0.012) and triiodothyronine (37.9 +/- 6.9 vs. 5.9 +/- 0.9, p = 0.012), accelerated heart rate (94 +/- 7 vs. 69 +/- 5, p = 0.012), decreased BMI (24.5 +/- 1.9 vs. 25.1 +/- 1.9, p = 0.025) and decreased percentage body fat (32.8 +/- 4.4 vs. 37.1 +/- 4.5, p = 0.018), as compared to the euthyroid state. Using RT-competitive-PCR, the UCP2 mRNA levels were found to be 2.5-fold upregulated in hyperthyroidism (10.4 +/- 1.7 vs. 4.2 +/- 1.3 amol/microg RNA, p = 0.012). In contrast, no difference in expression levels of the reference gene 18SrRNA was seen in the hyperthyroid versus the euthyroid state (317 +/- 49 vs. 279 +/- 25 amol/microg RNA, p = 0.48) but the difference in UCP2 mRNA levels between the hyper- and euthyroid state remained when UCP2 was related to 18SrRNA (p = 0.012). In conclusion, thyrotoxicosis markedly increases the expression of UCP2 mRNA in adipose tissue, which suggests a role for thyroid hormones in the regulation of this uncoupling protein in man.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.