Abstract
Intelligent ships are the future direction of maritime transportation. Route design and route planning of intelligent ships require high-precision, real-time maritime traffic network information, which changes dynamically as the traffic environment changes. At present, there is a lack of high-precision and accurate information extraction methods for maritime traffic networks. Based on the massive trajectory data of vessels, the adaptive waypoint extraction model (ANPG) is proposed to extract the critical waypoints on the traffic network, and the improved kernel density estimation method (KDE-T) is constructed to mine the spatial–temporal characteristics of marine lanes. Then, an automatic traffic network generation model (NNCM), based on the pix2pix network, is put forward to reconstruct the maritime traffic network. NNCM has been tested on the historical trajectory data of Humen waters and Dongping waters in China, the experimental results show that the NNCM model improves the extraction accuracy by 13% and 33% compared to the geometric analysis method and density clustering method. It is of great significance to improve the navigation accuracy of intelligent ships. This method can also provide important technical support for waterway design and monitoring and maritime traffic supervision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.