Abstract

BackgroundAcetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer’s and Parkinson’s etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported.ResultsWe screened 887 marine bacteria for the presence of acetylcholinesterase inhibitors, in a microplate based assay, and found that 140 (15.8%) of them inhibit the electric eel enzyme, acetylcholinesterase. Majority of the active isolates were bacterial associates of soft corals followed by sediment isolates while most of the potent inhibitors belonged to the bacterial associates of marine sponges. Maximum inhibition (54%) was exhibited by a bacterial strain M18SP4P (ii), isolated from the marine sponge Fasciospongia cavernosa. Based on phenotypic characterization and 16S rDNA sequencing, the strain was identified as Bacillus subtilis - revealing yet another activity in a strain of the model organism that is considered to be a cell factory. TLC bioautography of the methanol extract of this culture, showed the presence of two major components having this activity, when compared to Galanthamine, the positive control.ConclusionFrom the results of our study, we conclude that acetylcholinesterase inhibitors are quite prevalent in marine bacteria, particularly the bacterial associates of marine invertebrates. Several potential AChE inhibitors in marine bacteria are waiting to be discovered to provide easily manipulable natural sources for the mass production of these therapeutic compounds.

Highlights

  • Acetylcholinesterase inhibitors (AChEIs) work by increasing the concentration of acetylcholine (ACh) in the brain, due to reduction in the rate of its breakdown by acetylcholinesterase (AChE)

  • Majority of AChE inhibitors are derived from plants [1,4], but they were isolated from extracts of some algae, fungi, cyanobacteria, marine phytoplankton and marine sessile organisms like sponges and soft corals

  • Anticholinesterase compounds like the arisugacin, sporothrin and curvularin have been isolated from fungi [5,6,7]; sargaquinoic acid was found in marine alga Sargassum sagamianum [8] and recently, biruloquinone isolated from a lichen forming fungi Cladonia macilenta, was identified as an inhibitor of acetylcholinesterase [9]

Read more

Summary

Introduction

Acetylcholinesterase inhibitors (AChEIs) work by increasing the concentration of acetylcholine (ACh) in the brain, due to reduction in the rate of its breakdown by acetylcholinesterase (AChE). These inhibitors, naturally found in venoms, have a range of applications from pharmaceuticals to insecticides and weapons like nerve gas [1]. Majority of AChE inhibitors are derived from plants [1,4], but they were isolated from extracts of some algae, fungi, cyanobacteria, marine phytoplankton and marine sessile organisms like sponges and soft corals. Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.