Abstract

The Systematic Review Toolbox aims provide a web-based catalogue of tools that support various tasks within the systematic review and wider evidence synthesis process. Identifying publications surrounding specific systematic review tools is currently challenging, leading to a high screening burden for few eligible records. We aimed to develop a search strategy that could be regularly and automatically run to identify eligible records for the SR Toolbox, thus reducing time on task and burden for those involved. We undertook a mapping exercise to identify the PubMed IDs of papers indexed within the SR Toolbox. We then used the Yale MeSH Analyser and Visualisation of Similarities (VOS) Viewer text-mining software to identify the most commonly used MeSH terms and text words within the eligible records. These MeSH terms and text words were combined using Boolean Operators into a search strategy for Ovid MEDLINE. Prior to the mapping exercise and search strategy development, 81 software tools and 55 'Other' tools were included within the SR Toolbox. Since implementation of the search strategy, 146 tools have been added. There has been an increase in tools added to the toolbox since the search was developed and its corresponding auto-alert in MEDLINE was originally set up. Developing a search strategy based on a mapping exercise is an effective way of identifying new tools to support the systematic review process. Further research could be conducted to help prioritise records for screening to reduce reviewer burden further and to adapt the strategy for disciplines beyond healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.