Abstract
Multidimensional hourglass filter banks decompose the frequency spectrum of input signals into hourglass-shaped directional subbands, each aligned with one of the frequency axes. The directionality of the spectral partitioning makes these filter banks useful in separating the directional information in multidimensional signals. Despite the existence of various design techniques proposed for the 2-D case, to our best knowledge, the design of hourglass filter banks in 3-D and higher dimensions with finite impulse response (FIR) filters and perfect reconstruction has not been previously reported. In this paper, we propose a novel mapping-based design for the hourglass filter banks in arbitrary dimensions, featuring perfect reconstruction, FIR filters, efficient implementation using lifting/ladder structures, and a near-tight frame construction. The effectiveness of the proposed mapping- based design depends on the study of a set of conditions on the frequency supports of the mapping kernels. These conditions ensure that we can still get good frequency responses when the component filters used are nonideal. Among all feasible choices, we then propose an optimal specification for the mapping kernels, which leads to the simplest passband shapes and involves the fewest number of frequency variables. Finally, we illustrate the proposed techniques by a design example in 3-D, and an application in video denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.