Abstract
A package for investigating problems about configuration theorems in 3D-geometry and performing mechanical theorem proving and discovery is presented. It includes the preparation of the problem, consisting of three processes: defining the geometric objects in the configuration; determining the hypothesis conditions through a point-on-object declaration method; and fixing the thesis conditions. After this preparation, methods based both on Groebner Bases and Wu's method can be applied to prove thesis conditions or to complete hypothesis conditions. Homogeneous coordinates are used in order to treat projective problems (although affine and Euclidean problems can also be treated). A Maple implementation of the method has been developed. It has been used to extend to 3D some classic 2D theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.