Abstract
An ensemble speaker and speaking environment modeling (ESSEM) approach was recently developed. This ESSEM process consists of offline and online phases. The offline phase establishes an environment structure using speech data collected under a wide range of acoustic conditions, whereas the online phase estimates a set of acoustic models that matches the testing environment based on the established environment structure. Since the estimated acoustic models accurately characterize particular testing conditions, ESSEM can improve the speech recognition performance under adverse conditions. In this work, we propose two maximum a posteriori (MAP) based algorithms to improve the online estimation part of the original ESSEM framework. We first develop MAP-based environment structure adaptation to refine the original environment structure. Next, we propose to utilize the MAP criterion to estimate the mapping function of ESSEM and enhance the environment modeling capability. For the MAP estimation, three types of priors are derived; they are the clustered prior (CP), the sequential prior (SP), and the hierarchical prior (HP) densities. Since each prior density is able to characterize specific acoustic knowledge, we further derive a combination mechanism to integrate the three priors. Based on the experimental results on the Aurora-2 task, we verify that using the MAP-based online mapping function estimation can enable ESSEM to achieve better performance than using the maximum-likelihood (ML) based counterpart. Moreover, by using an integration of the online environment structuring adaptation and mapping function estimation, the proposed MAP-based ESSEM framework is found to provide the best performance. Compared with our baseline results, MAP-based ESSEM achieves an average word error rate reduction of 15.53% (5.41 to 4.57%) under 50 testing conditions at a signal-to-noise ratio (SNR) of 0 to 20 dB over the three standardized testing sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.