Abstract

We construct a simple symplectic map to study the dynamics of eccentric orbits in non-spherical potentials. The map offers a dramatic improvement in speed over traditional integration methods, while accurately representing the qualitative details of the dynamics. We focus attention on planar, non-axisymmetric power-law potentials, in particular the logarithmic potential. We confirm the presence of resonant orbit families (``boxlets'') in this potential and uncover new dynamics such as the emergence of a stochastic web in nearly axisymmetric logarithmic potentials. The map can also be applied to triaxial, lopsided, non-power-law and rotating potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.