Abstract
A new system of many-valued logic, the Extended Post system of order p, p ≥ 2, is proposed as a system of logic supporting reasoning with facts and rules which are reliable to a specified extent. In an Extended Post system there are as many operations of logical disjunction and logical conjunction as there are truth values. The truth value associated with a particular operation of disjunction (conjunction) acts as a threshold value controlling the behavior of the operation. The availability of an extended set of logical operations provides improved flexibility in the symbolic translation of sentences from the ordinary word-language. Extended Post systems are equipped with a semantics in which graded rather than crisp sets correspond to predicates. The system exhibits a rich algebraic structure. The p operations of disjunction form a distributivity cycle. To each disjunction there corresponds a dual operation of conjunction, the two operations being distributive to one another. The p conjunctions form a dual distributivity cycle. Both propositional calculus and first-order predicate calculus of EP systems are developed. The application to approximate reasoning is described. It is shown that there exist distinct isomorphic copies of fuzzy logic, each corresponding to a distinct level of approximation and being complete to resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.