Abstract
Multiobjective evolutionary algorithms have become prevalent and efficient approaches for solving multiobjective optimization problems. However, their performances deteriorate severely when handling many-objective optimization problems (MaOPs) due to the loss of selection pressure to drive the search toward the Pareto front and the ineffective design in diversity maintenance mechanism. This paper proposes a many-objective evolutionary algorithm (MaOEA) based on directional diversity (DD) and favorable convergence (FC). The main features are the enhancement of two selection schemes to facilitate both convergence and diversity. In the algorithm, a mating selection based on FC is applied to strengthen selection pressure while an environmental selection based on DD and FC is designed to balance diversity and convergence. The proposed algorithm is tested on 64 instances of 16 MaOPs with diverse characteristics and compared with seven state-of-the-art algorithms. Experimental results show that the proposed MaOEA performs competitively with respect to chosen state-of-the-art designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.