Abstract

A variant of the hybridization oligonucleotide microarray, utilizing the principle of many probes-one spot (MPOS-microarrays), is proposed. A case study based on Orthopoxviruses (Variola, Monkeypox, and Ectromelia viruses) demonstrates a considerable increase in the fluorescence signal (up to 100-fold) when several oligonucleotide probes are printed to one spot. Moreover, the specificity of detection also increases (almost 1000-fold), allowing the use of probes that individually lack such high specificity. The optimal probes have a Tm of 32-37°C and length of 13-15 bases. We suggest that the high specificity and sensitivity of the MPOS-microarray is a result of cooperativity of DNA binding with all probes immobilized in the spot. This variant of DNA detection can be useful for designing biosensors, tools for point-of-care (POC) diagnostics, microbial ecology, analysis of clustered regularly interspaced short palindromic repeats (CRISPR), and others. Graphical abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.