Abstract

For many-objective optimization problems, due to the low selection pressure of the Pareto-dominance relation and the ineffectivity of diversity maintenance scheme in the environmental selection, the current Pareto-dominance based multi-objective evolutionary algorithms (MOEAs) fail to balance between convergence and diversity. This paper proposes a many-objective evolutionary algorithm based on hyperplane projection and penalty distance selection (we call it MaOEA-HP). Firstly, the normalization method is used to construct an unit hyperplane and the population is projected onto the unit hyperplane. Then, a harmonic average distance is applied to calculate the crowding density of the projected points on the unit hyperplane. Finally, the perpendicular distance from the individual to the hyperplane as convergence information is added into the diversity maintenance phase, and a penalty distance selection scheme is designed to balance between convergence and diversity of solutions. Compared with six state-of-the-art many-objective evolutionary algorithms, the experimental results on two well-known many-objective optimization test suites show that MaOEA-HP has more advantage than the other algorithms, could improve the convergence and ensure the uniform distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call