Abstract

SummaryAlthough some many‐objective optimization algorithms (MaOEAs) have been proposed recently, Pareto dominance‐based MaOEAs still cannot effectively balance convergence and diversity in solving many objective optimization problems (MaOPs) due to insufficient selection pressure. To address this problem, a bi‐directional fusion niche domination is proposed. This method merges the strengths of cone and parallel decomposition directions in comparing dominations for nondominance stratification within the candidate population, augmenting the selection pressure of population. Subsequently, the crowding distance is introduced as an additional selection criterion to further refine the selection of nondominated individuals within the critical layer. Lastly, a MaOEA based on bi‐directional fusion niche dominance (MaOEA/BnD) is proposed, utilizing bi‐directional fusion niche dominance and crowding distance as important components of environmental selection. The performance of MaOEA/BnD was compared with five representative MaOEAs in 20 benchmark problems. Experimental results demonstrate that MaOEA/BnD effectively balances convergence and diversity when handling MaOPs with complex Pareto fronts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.