Abstract
The phenomenon of droplets impacting fiber has important applications in the recovery of waste liquid, separation of solid and liquid phases, gas and liquid phases, and glass wool manufacturing. This study explored the impact of droplets on fiber based on the many-body dissipative particle dynamics (MDPD) method. First, the impact of droplets on fiber at different angles was simulated, and the results were found to be in good agreement with the experimental results. We then investigated the influence of droplet eccentricity, fiber tilt angle, and wettability on the collision results and found that droplet critical velocity V*, wetting length L, contact time t, and droplet capture rate all increased with tilt angle and decreased with the increase in eccentricity. In addition, fiber wettability had little effect on contact time t but had a greater effect on critical velocity V*. Except for hydrophobicity, wettability also had little effect on droplet capture rate. The theoretical derivation obtained the analytical formulas of critical velocity V*, dimensionless wetting length L*, and dimensionless contact time t* when the eccentric droplet hits the inclined fiber. The simulation results are highly consistent with the theoretical values. This research possesses important guiding significance for actual production and life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.