Abstract

To meet the demand for higher performance and wearability, integrated circuits are developing towards having multilayered structures and greater flexibility. However, traditional circuit fabrication methods using etching and lamination processes are not compatible with flexible substrates. As a non-contact printing method in additive manufacturing, electrohydrodynamic printing possesses advantages such as environmental friendliness, sub-micron manufacturing, and the capability for flexible substrates. However, the interconnection and insulation of different conductive layers become significant challenges. This study took composite silver ink as a conductive material to fabricate a circuit via electrohydrodynamic printing, applied polyimide spraying to achieve interlayer insulation, and drilled micro through-holes to achieve interlayer interconnection. A 200 × 200 mm2 ten-layer flexible circuit was thus prepared. Furthermore, we combined a finite element simulation with reliability experiments, and the prepared ten-layer circuit was found to have excellent bending resistance and thermal cycling stability. This study provides a new method for the manufacturing of low-cost, large-sized, multilayer flexible circuits, which can improve circuit performance and boost the development of printed electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.