Abstract

The trichromatic visualization of hundreds of bands in a hyperspectral image (HSI) has been an active research topic. The visualized image shall convey as much information as possible from the original data and facilitate easy image interpretation. However, most existing methods display HSIs in false color, which contradicts with user experience and expectation. In this paper, we propose a new framework for visualizing an HSI with natural color by the fusion of an HSI and a high-resolution color image via manifold alignment. Manifold alignment projects several data sets to a shared embedding space where the matching points between them are pairwise aligned. The embedding space bridges the gap between the high-dimensional spectral space of the HSI and the RGB space of the color image, making it possible to transfer natural color and spatial information in the color image to the HSI. In this way, a visualized image with natural color distribution and fine spatial details can be generated. Another advantage of the proposed method is its flexible data setting for various scenarios. As our approach only needs to search a limited number of matching pixel pairs that present the same object, the HSI and the color image can be captured from the same or semantically similar sites. Moreover, the learned projection function from the hyperspectral data space to the RGB space can be directly applied to other HSIs acquired by the same sensor to achieve a quick overview. Our method is also able to visualize user-specified bands as natural color images, which is very helpful for users to scan bands of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.