Abstract
This article incorporates free-surface and ambient wave effects into a nonlinear parametric model. Subsequently, its use is demonstrated via simulation of a scale model submarine maneuvering under the control of a nonlinear depth-keeping control system in a seaway. An energy-based model is presented, which represents the underactuated submarine in a free-surface-affected state. This model is then used to synthesize a control law using port-Hamiltonian theory and interconnection and damping assignment passivity-based control. The Lyapunov analysis is used to study the stability of the closed-loop system, and a simulation-based demonstration illustrates the performance of the control law. The results demonstrate that a closed-loop nonlinear controller is able to improve the quality of near-surface depth keeping by automatically compensating for parasitic effects in the hydrodynamics that can compromise depth-keeping performance during maneuvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.