Abstract

Mammalian cells contain an elaborate network of organelles and molecular machines that orchestrate essential cellular processes. Visualization of this network at a molecular level is vital for understanding these cellular processes. Here we present a model system based on nerve growth factor (NGF)-differentiated PC12 cells (PC12+) and suitable for high resolution imaging of organelles and molecular machines in situ. We detail an optimized imaging pipeline that effectively combines correlative light and electron microscopy (CLEM), cryo-focused ion beam (cryo-FIB), cryo-electron tomography (cryo-ET), and sub-tomogram averaging to produce three-dimensional and molecular resolution snapshots of organelles and molecular machines in near-native cellular environments. Our studies demonstrate that cryo-ET imaging of PC12+ systems provides an accessible and highly efficient avenue for dissecting specific cellular processes in mammalian cells at high resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call