Abstract

Variants of mouse leukaemia L1210 cells have been isolated in which cytotoxicity to dimethyl sulphate is not fully potentiated by ADP-ribosyl transferase inhibitor 3-aminobenzamide, as occurs in normal L1210 cells. These variants were selected after mutagenesis by growing the cells in dimethyl sulphate and 3-aminobenzamide. The characterization of one of these variants is described. Variant 3 cells repair low doses of DNA damage in the presence of ADP-ribosyl transferase inhibitors. The V max of the ADP-ribosyl transferase enzyme in these cells is only increased 35% compared to normal wild-type L1210 cells. The basal DNA ligase I activity is increased 66% above wild-type whereas DNA ligase II activity appears to be unchanged. The most striking observation, however, is that the DNA ligase II activity is not increased after dimethyl sulphate treatment as occurs in wild-type L1210 cells. It seems that by increasing DNA ligase I levels these cells can survive DNA damage in the presence of 3-aminobenzamide. This variant (mutant) provides genetic evidence for our previously published hypothesis that (ADP-ribose) n biosynthesis is required for efficient DNA repair after DNA damage by monofunctional alkylating agents, because ADP-ribosyl transferase activity regulates DNA ligase activity. This variant is the first mammalian cell reported in which DNA ligase activity is altered, as far as we are aware. In yeast, a DNA ligase mutant has a cell division cycle (cdc) phenotype. Presumably, DNA ligase is essential for DNA synthesis, repair and recombination. The present variant provides further evidence that in mammalian cells. DNA ligase II activity is related to ADP-ribosyl transferase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call