Abstract

Gametogenesis is a sexually dimorphic process requiring profound differences in germ cell differentiation between the sexes. In mammals, the presence of heteromorphic sex chromosomes in males creates additional sex-specific challenges, including incomplete X and Y pairing during meiotic prophase. This triggers formation of a heterochromatin domain, the XY body. The XY body disassembles after prophase, but specialized sex chromatin persists, with further modification, through meiosis. Here, we investigate the function of DMRT7, a mammal-specific protein related to the invertebrate sexual regulators Doublesex and MAB-3. We find that DMRT7 preferentially localizes to the XY body in the pachytene stage of meiotic prophase and is required for male meiosis. In Dmrt7 mutants, meiotic pairing and recombination appear normal, and a transcriptionally silenced XY body with appropriate chromatin marks is formed, but most germ cells undergo apoptosis during pachynema. A minority of mutant cells can progress to diplonema, but many of these escaping cells have abnormal sex chromatin lacking histone H3K9 di- and trimethylation and heterochromatin protein 1β accumulation, modifications that normally occur between pachynema and diplonema. Based on the localization of DMRT7 to the XY body and the sex chromatin defects observed in Dmrt7 mutants, we conclude that DMRT7 plays a role in the sex chromatin transformation that occurs between pachynema and diplonema. We suggest that DMRT7 may help control the transition from meiotic sex chromosome inactivation to postmeiotic sex chromatin in males. In addition, because it is found in all branches of mammals, but not in other vertebrates, Dmrt7 may shed light on evolution of meiosis and of sex chromatin.

Highlights

  • Sexual differentiation generates anatomical, physiological, and behavioral dimorphisms that are essential for sexual reproduction

  • We investigate the function of the Dmrt7 gene, one of seven related genes in the mouse

  • We find that DMRT7 protein is present in germ cells, localizes to the male XY body during meiosis, and is essential for male but not female fertility

Read more

Summary

Introduction

Physiological, and behavioral dimorphisms that are essential for sexual reproduction. Many of these dimorphisms affect somatic cells, but the sexual dimorphisms that most directly mediate sexual reproduction are those of the gametes themselves. Gametes differ between the sexes in size and morphology, sometimes dramatically so, reflecting their very different roles in zygote formation. The morphology of the gametes is what defines sex: females are the sex that produces the larger gametes and males produce the smaller ones. Male meiosis occurs entirely postnatally, without the arrest periods found in females. Each meiosis can produce a single haploid oocyte (and two extruded polar bodies), whereas each male meiosis can produce four haploid spermatocytes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call