Abstract

The formation scenario for giant low surface brightness (gLSB) galaxies with discs as large as 100 kpc still remains unclear. These stellar systems are rare and very hard to observe, therefore a detailed insight on every additional object helps to understand their nature. Here we present a detailed observational study of the gLSB UGC 1922 performed using deep optical imaging and spectroscopic observations combined with archival ultraviolet data. We derived spatially resolved properties of stellar and ionized gas kinematics and characteristics of stellar populations and interstellar medium. We reveal the presence of a kinematically decoupled central component, which counter rotates with respect to the main disc of UGC 1922. The radial metallicity gradient of the ionised gas is in agreement with that found for moderate-size LSB galaxies. At the same time, a slowly rotating and dynamically hot central region of the galaxy hosts a large number of old metal-rich stars, which creates an appearance of a giant elliptical galaxy, that grew an enormous star forming disc. We reproduce most of the observed features of UGC 1922 in N-body/hydrodynamical simulations of an in-plane merger of giant Sa and Sd galaxies. We also discuss alternative formation scenarios of this unusual system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.