Abstract

Abstract Three-dimensional seismic reflection data, well data, and analogues from areas with extensive shale tectonics indicate that the enigmatic deepwater “shale nappe or thrust sheet” region of northern offshore Sabah, Malaysia, now referred to as the North Sabah–Pagasa Wedge (NSPW), is actually a region of major mobile shale activity characterized by mini-basins and mud pipes, chambers, and volcanoes. A short burst of extensive mud volcano activity produced a submarine mud canopy complex composed of ~50 mud volcano centers (each probably composed of multiple mud volcanoes) that cover individual areas of between 4 and 80 km2. The total area of dense mud canopy development is ~1900 km2. During the middle Miocene, the post-collisional NSPW was composed predominantly of overpressured shales that were loaded by as much as 4 km thickness of clastics in a series of mini-basins. Following mini-basin development, there was a very important phase of mud volcanism, which built extensive mud canopies (coalesced mud flows) and vent complexes. The mud canopies affected deposition of the overlying and interfingering deposits, including late middle to early late Miocene deepwater turbidite sandstones, which are reservoirs in some fields (e.g., Rotan field). The presence of the extensive mud volcanoes indicates very large volumes of gas had to be generated within the NSPW to drive the mud volcanism. The Sabah example is only the second mud canopy system to be described in the literature and is the largest and most complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call