Abstract
Relaxation of airway smooth muscle is dependent predominantly upon elevation of cell cAMP content. Although the processes involved in elevation of cell cAMP content are reasonably well established, the mechanisms governing subsequent control of cAMP turnover are less clear. Breakdown of cAMP is solely regulated by phosphodiesterase (PDE) isoenzymes. We have previously reported that PDE4 family members are likely to be important in this process, and that expression of PDE4D variants is actively regulated at the transcriptional level. Here, we demonstrate a key role for PDE4D5 in the control of beta(2)-adrenoceptor (beta(2)AR)-stimulated cAMP activity in human airway smooth muscle cells using splice variant-specific small interfering RNA knockdown. Furthermore, we show, using an Epac (exchange protein directly activated by cAMP)-based, cAMP-sensitive fluorescent probe, that these intracellular cAMP gradients are controlled both temporally and dynamically by PDE4D5. Elevation of cAMP within the cytoplasm after beta(2)AR stimulation is rapid and shows no distinct spatial compartmentalization in these cells. These data suggest that PDE4D5, despite being a minor component of the tissue PDE pool, is the key physiological regulator of beta(2)AR-induced cAMP turnover within human airway smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.