Abstract

Azospirillum brasilense shows chemotaxis to a variety of nutrients and oxygen. Genes encoding the central signal transduction pathway in chemotaxis were identified by phenotypic complementation of generally non-chemotactic mutants. Sequencing of a DNA fragment, which complemented two different mutants, revealed a region of five open reading frames translated in one direction and encoding homologs of known genes comprising excitation and adaptation pathways for chemotaxis in other bacterial species. The major chemotaxis gene cluster appears to be essential for all known behavioral responses that direct swimming motility in A. brasilense. Phylogenetic and genomic analysis revealed three groups of chemotaxis operons in alpha-proteobacterial species and assigned the A. brasilense operon to one of them. Interestingly, operons that are shown to be major regulators of behavior in several alpha-proteobacterial species are not orthologous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.