Abstract

NAC proteins are plant-specific transcription factors that play essential roles in stress responses. However, only little information regarding stress-related NAC genes is available in maize. In this study, a maize NAC gene, ZmSNAC1, was cloned and functionally characterized. Expression analysis revealed that ZmSNAC1 was strongly induced by low temperature, high-salinity, drought stress, and abscisic acid (ABA) treatment, but downregulated by salicylic acid treatment. Subcellular localization experiments in Arabidopsis protoplast cells indicated that ZmSNAC1 was localized in the nucleus. Transactivation assays demonstrated that ZmSNAC1 functioned as a transcriptional activator. Overexpression of ZmSNAC1 in Arabidopsis led to hypersensitivity to ABA and osmotic stress at the germination stage, but enhanced tolerance to dehydration compared to wild-type seedlings. These results suggest that ZmSNAC1 functions as a stress-responsive transcription factor in positive modulation of abiotic stress tolerance, and may have applications in the engineering of drought-tolerant crops. ZmSNAC1 functioned as a stress-responsive transcription factor in response to abiotic stresses, and might be useful for crop tolerance improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.