Abstract

BackgroundHeat shock transcription factors (Hsfs) are highly conserved among eukaryote and always play vital role in plant stress responses. Whereas, function and mechanism of Hsfs in maize are limited.ResultsIn this study, an HSF gene ZmHsf11, a member of class B Hsfs, was cloned from maize, and it was up-regulated under heat treatment. ZmHsf11 was a nuclear protein with no transcriptional autoactivation activity in yeast. Overexpression of ZmHsf11 gene in Arabidopsis and rice significantly reduced the survival rate under heat shock treatment and decreased ABA sensitivity of transgenic plants. Under heat stress, transgenic rice accumulated more H2O2, increased cell death, and decreased proline content compared with wild type. In addition, RT-qPCR analysis revealed that ZmHsf11 negatively regulated some oxidative stress-related genes APX2, DREB2A, HsfA2e, NTL3, GR and HSP17 under heat stress treatment.ConclusionsOur results indicate that ZmHsf11 decreases plant tolerance to heat stress by negatively regulating the expression of oxidative stress-related genes, increasing ROS levels and decreasing proline content. It is a negative regulator involved in high temperature stress response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.