Abstract

Coating deposition study results are presented a source of joint flow of metal atoms and highenergy gas atoms being used for the deposition. Metal atoms are produced due to sputtering of a flat rectangular target in magnetron discharge. Gas atoms with energies up to 30 keV are produced due to both the acceleration of ions from discharge plasma by high-voltage pulses applied to a grid that is parallel to the target, and ion charge exchange in space-charge sheaths near the grid surface. Metal atoms pass through the grid and are deposited on articles. The coincidence of their trajectories with those of gas atoms that bombard the growing coating allows coatings to be synthesized on dielectric articles that rotate in a chamber. High-energy gas atoms mix the atoms of the coating with the atoms of the article material in its surface layer, thus improving the coating adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.