Abstract

While soft/partially soft-bodied robots have extensive applications, robust actuation system, efficient locomotion gait, and simple manufacture process are the main challenging problems. To address these challenges, this article proposes a novel magnetorheological fluid (MRF)-filled soft crawling robot with magnetic actuation in congested spaces as a transport function. In this new soft robot, MRF is innovatively applied to establishing a robust actuation system owing to its characteristics of millisecond magnetization, zero magnetic coercivity, and flexible integration. Because the crawling locomotion of the robot is generated by the anisotropic magnetic torque, when the magnetic field is closed neither components of the proposed robot will magnetically interfere with each other. Thus, an efficient locomotion gait can be realized. Lastly, 3-D printing 3-DP has been employed to manufacture the soft robot, which will make the manufacture process simple and costless. Both numerical and experimental evaluations were performed to analyze the dynamics of the newly designed MRF crawling robot with single-step and continuous locomotion conditions. The experimental test result was basically consistent with the simulation, which indicates good movement feasibility of the proposed crawling robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.