Abstract

We propose and investigate an electrical-to-optical clock multiplier, based on a bismuth-substituted yttrium iron garnet (Bi:YIG) magnetoplasmonic Mach-Zehnder interferometer (MZI). Transient magnetic fields induce a precession of the magnetization vector of the Bi:YIG, which in turn modulates the nonreciprocal phase shift in the MZI arms, and hence the intensity at the output port. We show that the device is capable of modulation depth of 16.26 dB and has a tunable output frequency between 279.9 MHz and 5.6 GHz. Correspondingly, the input electrical modulation frequency can be multiplied by factors of up to 2.1×103 in the optical signal. Such a device is envisioned as a critical component in the development of hybrid electrical-optical circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.