Abstract
The Los Alamos National Laboratory Coaxial Thruster Experiment (CTX) has been upgraded to enable 10 ms quasi-steady-state (QSS) operation of magnetohydrodynamic type thrusters at power levels from 1 to 40 MW. Here we report on experimental observations and associated analysis for QSS discharges using deuterium, helium, and argon propellants. Measurements of thruster current and voltage, magnetic field fluctuations, electron density and temperature, and plasma potential indicate true quasi-steady operation over 10 ms with propellant exhaust velocities of 1-2/spl times/10/sup 5/ m/s in helium and deuterium. The application of unique applied magnetic nozzle configurations result in a substantial reduction of the measured anode fall potential. Data analysis and analytical MHD modeling imply an impulsive start in the propellant flow that is limited to the Alfven critical ionization velocity and the presence of an effective constriction or nozzling in the how channel. This research indicates that efficiency optimization of MHD class thrusters will most likely occur at megawatt power levels. This implies repetitively pulsed, high-power operation for near term, low-mean-power solar electric propulsion missions. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.