Abstract

During recent decades, data from space missions have provided strong evidence of deep liquid oceans underneath a thin outer icy crust on several moons of Jupiter, particularly Europa. But these observations have also raised many unanswered questions regarding the oceanic motions generated under the ice, or the mechanisms leading to the geological features observed on Europa. By means of direct numerical simulations of Europa's interior, we show here that Jupiter's magnetic field generates a retrograde oceanic jet at the equator, which may influence the global dynamics of Europa's ocean and contribute to the formation of some of its surface features by applying a unidirectional torque on Europa's ice shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.