Abstract

We propose a new non-local mean (NLM) algorithm using unsupervised learning and k-means clustering for denoising magnetic resonance (MR) images. Our technique improves image processing speeds with enhanced denoising performance on multiple types of images. The calculation of similarity weights at the cluster level improves computational efficiency. We conducted experiments with brain MR images of various sizes, including three T1- and T2-weighted images. Three quality metrics show that our algorithm achieves moderate improvements in denoising accuracy with significant reductions in execution time. The proposed method processed the sample data in one-fifth of the time of the original NLM method. Compared to several state-of-the-art methods, our method offers improved peak signal-to-noise ratios (PSNRs) for samples with large amounts of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.