Abstract

3D-printed porous titanium-aluminum-vanadium (Ti6Al4V, pTi) scaffolds offer surgeons a good option for the reconstruction of large bone defects, especially at the load-bearing sites. However, poor osteogenesis limits its application in clinic. In this study, a new magnetic coating is successfully fabricated by codepositing of Fe3 O4 nanoparticles and polydopamine (PDA) on the surface of 3D-printed pTi scaffolds, which enhances cell attachment, proliferation, and osteogenic differentiation of hBMSCs in vitro and new bone formation of rabbit femoral bone defects in vivo with/without a static magnetic field (SMF). Furthermore, through proteomic analysis, the enhanced osteogenic effect of the magnetic Fe3 O4 /PDA coating with the SMF is found to be related to upregulate the TGFβ-Smads signaling pathway. Therefore, this work provides a simple protocol to improve the osteogenesis of 3D-printed porous pTi scaffolds, which will help their application in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call