Abstract

Magnetic compensation coils are often used to improve the effectiveness of a magnetically shielded room (MSR), but a distortion of the field is caused by the shielding layer consisting of high-permeability material, which leads to a reduction in compensation capacity. To solve this problem, a new method is presented in this article based on a target-field method, an image method, and particle swarm optimization. By this way, a magnetic compensation system composed of biplanar coils is designed and fabricated to compensate the background field for a wearable magnetoencephalography device inside the MSR, and the coupling effect between the magnetic shielding material and the compensation field is effectively avoided. Experimental data show that these compensation coils produce uniform fields and field gradients with the inhomogeneity of less than 3.8%, consistent with the simulation results. In addition, this system realizes a real-time compensation to the residual field and field gradient in the MSR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.